Singapore's Tele-Rehabilitation (TR) Experience: Preliminary Results and Steps Forward

Saw Swee Hock School of Public Health

Department of Electrical & Computer Engineering Faculty of Engineering

Research

National University of Singapore

MOH HOLDINGS

Education

Clinical Care

The Basis for Telerehabilitation

- Singapore and Hong Kong both have an ageing population.
- The incidence and prevalence of disability increases with age.
- Rehabilitation reduces the burden of disability but...
 - Only a quarter of patients continue with centre-based rehabilitation after discharge
 - Home rehabilitation is expensive
- At a cost between the cost of centre and home based rehabilitation, telerehabilitation may improve:
 - Access to rehabilitation and subsequent independence.
 - Transition of rehabilitative care from hospital to home.

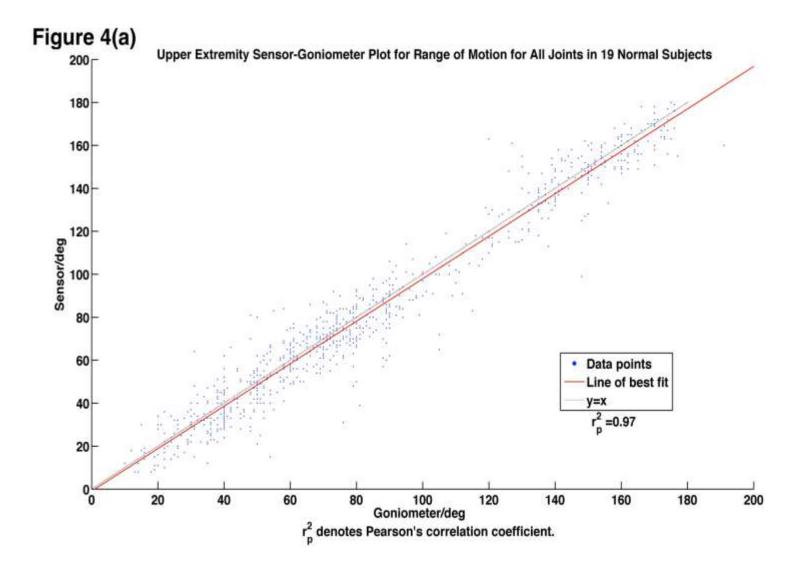
Telerehabilitation

Can we use instead:

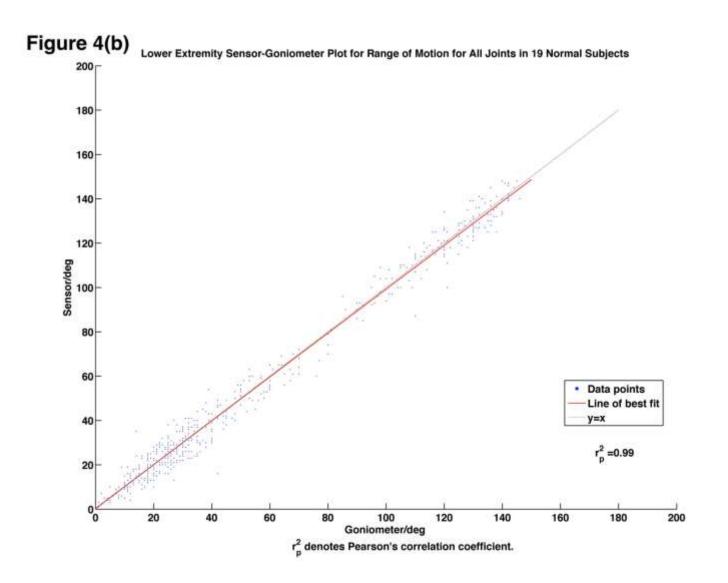
- *Training* for patients & caregivers on use of telerehabilitation system before discharge to home;
- Live real-time video-conferencing (e.g. FaceTime on iPads);
- Sensors to capture physical data to help therapists assess recovery process and prescribe next level of exercises;
- *Pushing training videos of* therapist-prescribed exercise *to patients*?

Telerehabilitation

- Since 2010, National University of Singapore has been developing a tele-rehabilitation system in collaboration with acute and community hospitals in Singapore
- Incorporates previously mentioned elements
- Its efficiency was evaluated in a time motion study.
- Its effectiveness is currently being evaluated in a randomized controlled trial which will end in Dec 2016.

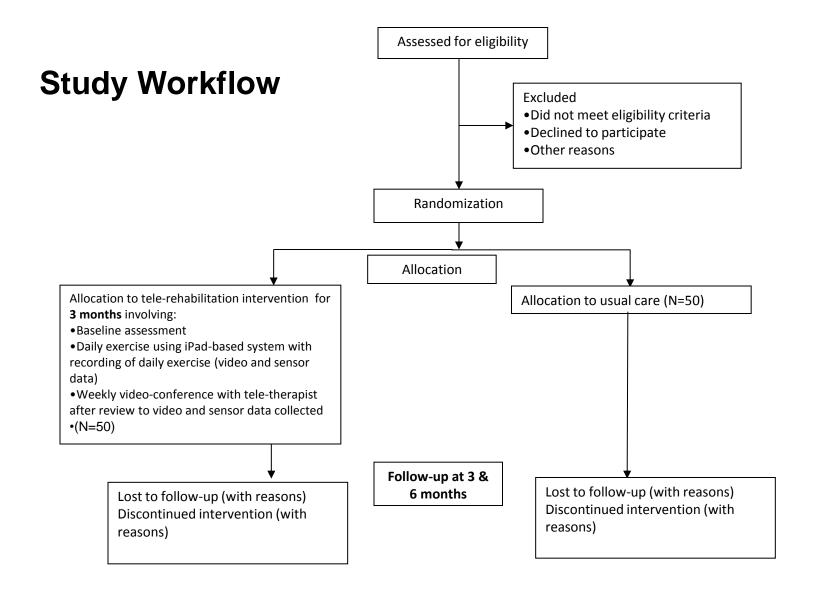

Mdm Doris Zen's Story

(1:48)


How the Telerehabilitation System Works

(1:11)

Accuracy of Sensors (Upper Extremities, UE)


Accuracy of Sensors (Lower Extremities, LE)

Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) Study: A Randomized Controlled Trial

Primary hypothesis

Among stroke survivors, a tele-rehabilitation intervention involving video-conferencing with a therapist and use of wearable monitoring devices during the first three months after stroke results greater functional recovery at three months, compared to usual care.

Preliminary Results

- The primary time-point for outcomes in the RCT is 3 months and the target size is 50 controls and 50 intervention subjects based on sample size calculations.
- These are the results of the interim mid-term analysis of 30 subjects recruited (14 control and 16 intervention subjects):
 - Of the 14 control subjects, 2 subjects defaulted follow-up, leaving 12 control subjects available for analysis for data at 3 month time-point.
 - Of the 16 intervention subjects, 2 subjects defaulted follow-up, leaving 14 intervention subjects available for analysis for data at 3 month time-point.
- Statistical significance cannot be assessed in this interim analysis because target sample has not been reached and hence current sample size is not powered.
- This interim analysis only reports preliminary primary findings.

Difference in Barthel Index (BI) score between baseline and <u>three</u> months

Group	Mean Change	Interpretation
Usual Care	-0.75	The tele-rehabilitation group <i>improved</i> in the functional status by 9.07 BI points, while the usual care <i>declined</i> by 0.75 BI points.
Telerehabilitation	+9.07	

(Barthel Index (BI) ranges from 0 to 100. The higher the improvement in Barthel Index score, the greater the functional improvement.)

Difference in Barthel Index (BI) score between baseline and <u>six</u> months

Group	Mean Change	Interpretation
Usual Care	+2.4	The tele-rehabilitation group continued to <i>improve</i> between 3 and 6 months,
Tele-rehabilitation	+11.50	even after tele-rehabilitation ended at 3 months.

(Barthel Index (BI) ranges from 0 to 100. The higher the improvement in Barthel Index score, the greater the functional improvement.)

Attendance at day rehabilitation centre during study

- At recruitment, 42% of controls were going for day outpatient rehab but only 14% of tele-rehab subjects were going for day outpatient rehab (which is expected as the tele-rehab group were already receiving tele-rehab).
- In contrast, at three months, 33% of controls were going for day outpatient rehab (a drop from 42%) but 64% of tele-rehab subjects (an increase from 14%) continued rehabilitation (after tele-rehab stopped) by going for day outpatient rehab.

Attendance at day outpatient rehabilitation during study

- It seems that without tele-rehab, patient in usual care remain disabled and continue to face physical barriers to getting to day outpatient rehab centre from persistent disability.
- In contrast, the tele-rehab group improves in physical function and possibly starts a positive feedback cycle whereby they become more independent and more motivated to do more rehab to the extent that when tele-rehab stops at 3 months, they choose to continue rehab at the day outpatient rehab centre thereafter to 6 months.
- A **qualitative study** on participants after completion of trial to explore their experience with tele-rehab and reasons why both groups continue with day outpatient rehab to 6 months.

Time Motion Study

- We also conducted a **time motion study** comparing the time spent and tasks executed during tele-rehabilitation in comparison with day outpatient and home rehabilitation.
- We measured the time spent by therapists and their therapy assistants, if applicable) on tasks of a typical rehabilitation session with a stroke patient who may be accompanied by a caregiver such as a family member or domestic helper, in the 3 settings:
 - 1. Home rehabilitation;
 - 2. Day outpatient rehabilitation;
 - 3. Tele-rehabilitation

Time Motion Study Results

Form of Rehabilitation	Mean (SD) Time Spent per Rehab Session (mins)		
	Therapist	Caregiver	
Day Outpatient	70.1 (7.3)	187.4 (55.3)	
Home	79.1 (10.6)	57.1 (8.5)	
Tele-Rehab	47.6 (13.5)	14.4 (8.3)	

Time Motion Study Results

- Post-hoc analysis: Even after excluding traveling time (patient traveling time in DR and therapist traveling time in HR), the duration of TR sessions still remained shorter than those of DR and HR.
- TR offers significant time savings for therapists compared to HR, and for patients compared to DR, not only by eliminating unproductive traveling time but also by independently increasing therapist efficiency.

Singapore's Telemedicine Strategy

- Health IT Master Plan
 - National Electronic Medical Record (EMR) System
 - Infra-structure [e.g. New Generation Broadband Network (NGBN)- 1Gps; 90% home coverage]
 - Telemedicine:
 - National Telemedicine Guidelines (March 2015)
 - MOHH Telemedicine Planning Office
 - National Telemedicine Implementation Workgroup (TIW)

National Telehealth Pilot Programmes

- National Telemedicine Implementation Workgroup (TIW) recommended *tele-rehabilitation* to be pilot tested on multiple sites and larger sample population to assess its suitability to be implemented as a national tele-health programme.
- Video-conferencing for national healthcare system and tele vital sign monitoring (VSM) were the other two telehealth initiatives shortlisted by the TIW for further assessment.
- Requests for Proposals (RFP) for TR service and evaluation was called on December 2015 to January 2016.

National Tele-Rehabilitation Pilot Programme

- Aim: To assess if *TR-supported (enhanced)* day outpatient and home rehabilitation is as effective as *usual care* range of 9 broad conditions:
 - 1. Stroke
 - 2. Fractures
 - 3. Lower limb joint replacement (e.g. hip and knee)
 - 4. Lower limb amputations
 - 5. Pneumonia,
 - 6. Falls
 - 7. Cancer
 - 8. Deconditioning
 - 9. Musculoskeletal conditions

National Tele-Rehabilitation Pilot Programme

- The pilot will examine the use of telerehabilitation (TR) to replace some rehab sessions in:
 - Day outpatient rehabilitation
 - Home rehabilitation
- A controlled quasi-experimental study design will be used.

National Tele-Rehabilitation Pilot Programme

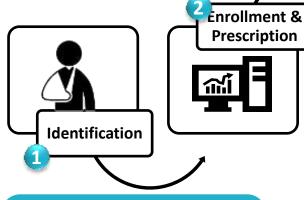
- The pilot is planned to be implemented in **4 settings** sites (5 acute hospitals, 3 community hospitals, 2 nursing homes and 3 day rehabilitation centres) and on at least 750 TR-enhanced patients and 750 usual care (non TR-enhanced) patients over 2 years.
- Other aims:
 - To increase therapists and patients' *exposure* to tele-rehabilitation as a new rehabilitation care model
 - Evaluate productivity gains in *TR-enhanced* rehabused using *time motion studies*

Tele-rehab – Patient journey

Enrolling patients for tele-rehabilitation through AIC IRMS, taking consent, and making advanced payment. Therapists can prescribe relevant rehabilitation exercises according to patients' conditions. Patients can make and modify appointment.

Tracking of tele-rehabilitation history, enabling therapists to review and generate patients' progress reports.

Outcomes


Tracking

5

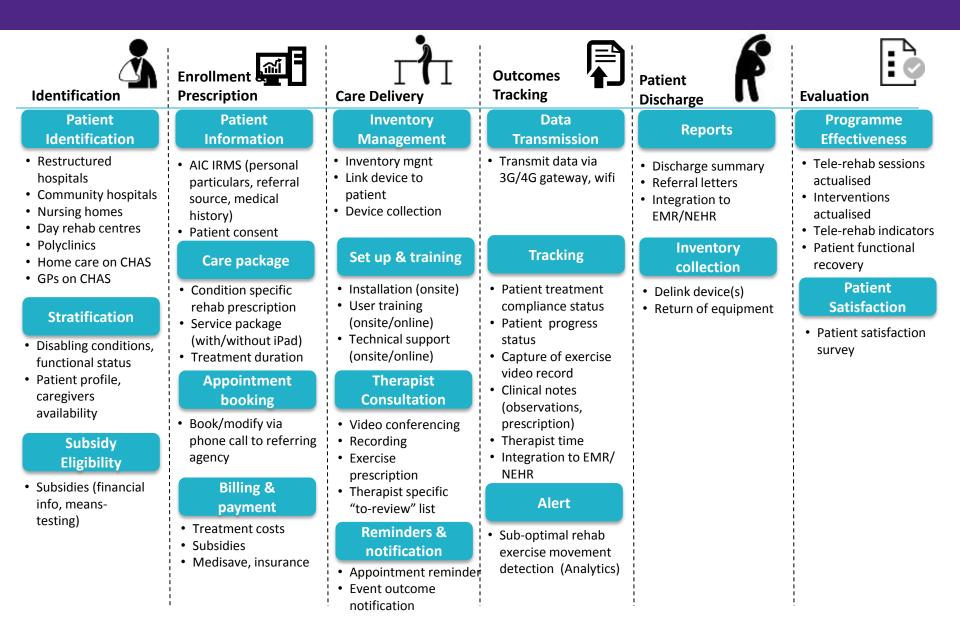
Evaluating the effectiveness of telerehabilitation (e.g. through compliance, clinical indicators or client satisfaction.

6

Evaluation

Identifying who is referred for tele-rehabilitation, assess patients' conditions, and determine subsidy eligibility.

Involving an initial home visit for set up of equipment at patients' home, and users training; daily recording of patients using tele-rehabilitation system to perform the prescribed exercises; and weekly virtual consults. Therapists n adjust prescribed exercises according to patients' progress.


Care Delivery

Patient Discharge Returning the equipment to provider, and for

therapist to arrange follow up care for patients

Common workflow for Tele-rehab

MOHHOLDINGS

Thank you

Any questions?

