

Vater lead incident The role of the laboratory

Dr Tony Mak Chief of Service, Pathology, PMH

Lead is everywhere

Battery

Fishing

Bullets

Fuel

Welding pipes

Radiator repair

Lead in cultural medicine

Lead in your food

This prevents lead absorption

Lead poisoning

Clinical

Radiological

Microscopic

... and of course biochemical

BLL & Health Effects

Death

Kidney diseases Anaemia Colic

Hb synthesis decreased

Impaired nerve conduction

Altered Vitamin D metabolism

Developmental problem Poorer IQ Poorer hearing Poorer growth

Biochemical changes

The bestBlood lead level

Not useful/Potentially misleading

- Urine lead
- Hair lead
- •

The role of the laboratory

- **Question:** Lead Poisoning? Lead Exposure? Normal?
- Blood lead level (BLL) measurement **Answer:**

 \rightarrow

- Normal \rightarrow ullet
- Slightly High \rightarrow ightarrow
- Very High •
- Normal
- Exposure
 - Poisoning

Very simple! ullet

The first challenge: workload

- Blood lead level (BLL) measurement
- How many?
 - A lot!
 - But, uncertain!
 - Changed on a weekly basis!
- Historical: a handful a week
- First week: 300!

Weekly workload = 100 folds of usual

- Demand > 100 folds of the usual demand
- Have done 20 years workload in 3 months!

The first challenge: workload

The first challenge: workload

- Just measure them all?
- Stock of tubes
- People running the clinic
- Space for the clinic
- Rota around the territory
- Designated clinic

The second challenge: source of lead?

- First big batch of residents (>300 cases)
- 13% abnormal!
- \rightarrow It is a real problem
- What is the source of lead?

The second challenge: source of lead?

• Results of this batch:

	Number	BLL	High
Children	230	27	11.7%
Pregnant	21	0	0%
Lactating	41	13	31.7%
Others	10	0	0%
Total	302	40	13.2%

- Younger children: more commonly affected
- Lactating women: more commonly affected

\rightarrow Water is the source of lead?

The second challenge: source of lead?

Lead Isotope Pattern Analysis

Naturally occurring isotopes of lead:

lsotop	Relative Proportion (approx.)
Pb 206	25%
Pb 207	25%
Pb 208	50%

- Relative proportion of the isotopes (the "isotope pattern"):
 → slightly different for different sources
- Blood lead isotope pattern is a "summation" of all sources

 Comparing the isotope patterns of a particular source with that in blood

 \rightarrow may be informative

Pb 207 (%)

BLL: Purple > Blue > Red > Green

Pb 207 (%)

... and here comes the real data!

Lead in blood is from lead in water!

比對同位素分布 高永文科學

府日前為23名血鉛超標的兒童進行智力測試,發 食物及衞生局局 **首智力發展彈緩** 長高え 指出,目前未有割一標準顯示個案是否與 5.的食水有關,局方將繼續跟谁個案,若發現智 但要待兒童上小學或幼稚園時才能確 後可 偏差 另外,他透露專家正比對血鉛與水辦中的鉛,同 勝重性 位素分布是否一致,初步看到兩者數據接近,反映科學角度上,居民的血液含 鉛很可能與食水含鉛有關。 本報港聞部報道

交綜合兒童發展評估中心跟進·其他兒 童可按母嬰健康院的檢查機制,兒童出 段時間後,母親可帶同其到母嬰鍵 世 康院接受早期發展評估·若評估發現有 會轉介綜合發展評估中心跟進,部 轉介至公立醫院兒科跟進,但目前 分會 為兒童的檢測專才不多·若未來有更多 兒童血鉛超標,會對醫療系統造成一定 壓力。

Secretary of Food & Health: Isotope pattern analysis -**Blood lead in residents** is related to water

鉛有關

上的刺激,多些與他們談詰以及有多些 活動機會等。

The source of lead in water

- Water supply department
- Source of lead in water was from solder
- The lead content of solder is 41%!
- The isotope pattern of lead in water matched that of solder!

Isotope Pattern: Finger Printing of Lead

Applying the isotope model

Applying the isotope model

Most looked the same

However:

Outliers have a different source of lead!

Case 1 (a family)

- Filter installed
- Exposure stopped
- Lead become higher
- Why?

Rising BLL?

- Filter installed
- Exposure stopped
- Lead become higher
- Why?
- Lived in an apartment elsewhere during weekdays

Challenge 3: When will my BLL return to normal?

- No local data
- Local toxicologists:
- The blood lead elimination half-life is 30 days!

- Time required to drop to 50% of the initial value
- Drug elimination
- Radioactive substance decay

- A child from Kwai Luen Estate
- BLL in July: 7.6 ug/dL
- One month later: 6.0 ug/dL
- The Government: decrease of BLL is individualized!

TABLE 4-3 Studies of Kinetic Behavior of Lead in Blood of Children

Study Group and Exposure	Half-Life, days	Comments (References)
Infants, middle class; ambient exposure	-	Blood lead very unstable for first 20 mo Rabinowitz et al., 1984)
Infants, middle class; ambient low exposure	5.6	Reanalysis of Ziegler et al. et al. (1978) data; mean-time 8 days (half-life, 5.6 days) (Duggan, 1983)
Infants, low socioeconomic status; heavy ambient exposure	ca. 300	Reflects high body burden plus in utero uptake in urban setting (Succop et al., 1987)
Low-socioeconomic-status children of battery workers; secondary exposure	-	Rank order of group preserved over 5 yr; $r = 0.74$ (Schroeder et al., 1985)
General U.S. child population; varied exposure	-	Regression analyses of NHANES blood lead data showed 30-day (best-fit) lag with lead source (Schwartz et al., 1985; Annest and Mahaffey, 1984)
School-age English children; low exposure	-	Two blood lead sets, 20 mo apart; rank order preserved (Landsdown et al., 1986)
U.S. children, 4-12 yr old; increased ambient exposure	-	Rank order of serial blood lead measures generally preserved (David et al., 1982)

- References:
- Half-lives ranged from 5.6 days to 300 days!

Drug elimination

Lead:

- Continuous exposure
- Multiple sources

- Half-life of BLL: 30 days
- Half-life of lead in bone: 25 years

Local lead half-life

- Late October 2015
- First batch of repeats

Overall t_{1/2} : 6 months

- Residents whose BLL returned to normal $t_{\frac{1}{2}}$: 5 months
- Residents whose BLL remained high
 - $t_{1/2}$: 10 months

Local lead half-life

Overall t_{1/2} : 6 months

- The elimination half-life is unexpectedly long
- A continuous source of lead?
- Where is it?
- BONE?

BLL & Health Effects

Death

Kidney diseases Anaemia Colic

Hb synthesis decreased

Impaired nerve conductor

Altered Vitamin D metabolism

Developmental pro Poorer IQ Poorer hearing Poorer growth

10-20: 11 (0.2%)

5-10: 182(3.2%)

< 5: 5460(96.6%)

Conclusions

- Mild but definite exposure
- Water was the source
- Most worrying: developing children
- Eliminate all lead-containing pipes
 - \rightarrow Water sample collection method
 - \rightarrow Overnight, not after running for 10 min!

Thank You!