

HA Convention 2016 Master course

How to Handle Abnormal Newborn Metabolic Screening Results – Causes, Management and Follow up

Dr. Josephine Chong Clinical Professional Consultant Centre of Inborn Errors of Metabolism Department of O&G and Department of Paediatrics

How to Handle Abnormal Newborn Metabolic Screening Results – Causes, Management and Follow up

- "Inborn errors of metabolism" (IEM)
 - a class of genetic disorders with defects of metabolism which are mostly due to single gene defects resulting in defective function of particular enzymes that are essential for conversion of substrates into products.

IEM disorders cause inadequate essential metabolites or accumulation of toxic intermediary metabolites for the body

How to Handle Abnormal Newborn Metabolic Screening Results – Causes, Management and Follow up

- "Inborn errors of metabolism" (IEM)
 - a class of genetic disorders with defects of metabolism which are mostly due to single gene defects resulting in defective function of particular enzymes that are essential for conversion of substrates into products.

IEM disorders cause inadequate essential metabolites or accumulation of toxic intermediary metabolites for the body

How to Handle Abnormal Newborn Metabolic Screening Results – Causes, Management and Follow up

Need to know all IEM disorders??

NO

Not all IEM disorders are included in a newborn metabolic screening programme

Newborn Metabolic Screening Results

What do you need to know when handling Abnormal Newborn Metabolic Screening Results

Abnormal/Uncertain result

Know the screening panel

1. What is the tested analytes

Amino acid								
Alanine	Citrulli	ine	Leucine/isoleuc	ine	Methionine	Ornithine	Valine	
Arginine	Glycin	е	Phenylalanine		Proline	Tyrosine	Succinylac	cetone*
Acylcarnitine	S							
C0		C 6		C12		C16:1		
C2		C6D	С	C12:	1	C16:10H		
C3		C8		C14		C18		
C3DC/C4OH		C8:1	L	C14:	1	C18:1		
C4		C10		C14:	2	C18:2		
C5		C10	:1	C140	ЭН	C180H		
C5:1		C10	:2	C16				

- 1. What is the tested analytes
- 2. What are the IEM disorders being screened

Inborn errors of metabolism categories	
Amino acid disorders	Phenylketonuria, Maple syrup urine disease, Citrullinemia type 1, Argininosuccinic aciduria, Homocystinuria, Tyrosinemia type 1, Arginase deficiency, Defects of biopterin cofactor biosynthesis and regeneration, Citrullinemia type 2
Organic acid disorders	Propionic acidemia, Isovaleric acidemia, Glutaric acidemia type 1, Methylmalonic aciduria, Beta- ketothiolase deficiency, Multiple carboxylase deficiency
Fatty acid oxidation disorders	Carnitine uptake defect, Medium-chain acyl-CoA dehydrogenase deficiency, Very long-chain acyl-CoA dehydrogenase deficiency, Carnitine Acylcarnitine translocase deficiency, Carnitine palmitoyltransferase I /II deficiency
香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong	

Inborn errors of metabolism categories	
Amino acid disorders	Phenylketonuria, Maple syrup urine disease, Citrullinemia type 1, Argininosuccinic aciduria, Homocystinuria, Tyrosinemia type 1, Arginase deficiency, Defects of biopterin cofactor biosynthesis and regeneration, Citrullinemia type 2
Organic acid disorders	Propionic acidemia, Isovaleric acidemia, Glutaric acidemia type 1, Methylmalonic aciduria, Beta- ketothiolase deficiency, Multiple carboxylase deficiency
Fatty acid oxidation disorders	Carnitine uptake defect, Medium-chain acyl-CoA dehydrogenase deficiency, Very long-chain acyl-CoA dehydrogenase deficiency, Carnitine Acylcarnitine translocase deficiency, Carnitine palmitoyltransferase I /II deficiency
香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong	

Inborn errors of metabolism categories	
Amino acid disorders	Phenylketonuria, Maple syrup urine disease, Citrullinemia type 1, Argininosuccinic aciduria, Homocystinuria, Tyrosinemia type 1, Arginase deficiency, Defects of biopterin cofactor biosynthesis and regeneration, Citrullinemia type 2
Organic acid disorders	Propionic acidemia, Isovaleric acidemia, Glutaric acidemia type 1, Methylmalonic aciduria, Beta- ketothiolase deficiency, Multiple carboxylase deficiency
Fatty acid oxidation disorders	Carnitine uptake defect, Medium-chain acyl-CoA dehydrogenase deficiency, Very long-chain acyl-CoA dehydrogenase deficiency, Carnitine Acylcarnitine translocase deficiency, Carnitine palmitoyltransferase I /II deficiency
香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong	

- 1. What is the tested analytes
- 2. What are the IEM disorders being screened
- 3. What are the factors affecting the levels of tested analytes
 - 1. Blood spots quality
 - 2. Timing of collection
 - 3. Baby's condition, feeding condition, liver function, medication

- 1. What is the tested analytes
- 2. What are the IEM disorders being screened
- 3. What are the factors affecting the levels of tested analytes
- 4. What are the limitations of the screening test
 - 1. The very mild variant of IEM disorders may not be picked up
 - 2. False negative (e.g. citrin deficiency)

What do you need to know when handling Abnormal Newborn Metabolic Screening Results

Abnormal/Uncertain result

Know the screening panel

Know the available test and treatment

Know the available test and treatment

- Testing: loading testing, confirmatory testing (biochemical, genetics testing)
- Dietary modification: special milk formula, tailored made TPN
- Medications: e.g. carnitine supplement, cofactor supplement (e.g.biotin), anti-hyperammonaemia medication etc
- Treatment for acute decompensation: NICU support, availability of haemodialysis

Know the available test and treatment

ACMG ACT sheet

American College of Medical Genetics ACT SHEET

Newborn Screening ACT Sheet [Elevated C5-DC Acylcarnitine] Glutaryl-CoA Dehydrogenase Deficiency

Differential Diagnosis: Glutaric aciduria (GA-1)

Condition Description: GA-1 is caused by a defect of glutaryl-CoA dehydrogenase which limits the metabolism of glutaryl-CoA to crotonyl-CoA, resulting in increased glutaric acid or its metabolites that are toxic.

YOU SHOULD TAKE THE FOLLOWING ACTIONS:

- Contact family IMMEDIATELY to inform them of the newborn screening result.
- Consult with pediatric metabolic specialist.
- Evaluate the newborn for macrocephaly and muscle hypotonia, initiate confirmatory/diagnostic testing as recommended by metabolic specialist.
- Refer to metabolic specialist to be seen as soon as possible but not later than three weeks.
- Educate family about diagnostic possibilities, complexity of diagnostic work-up and the possibility of neurodegenerative crisis with an intercurrent infectious illness.
- IMMEDIATE treatment with IV glucose is needed for intercurrent infectious illness.
- Report findings to newborn screening program.

ACMG algorithm

What do you need to know when handling Abnormal Newborn Metabolic Screening Results

Abnormal/Uncertain result

Know the screening panel

Know the available test and treatment

Know the parent response

Know the parent response

- Anxious about the result
- Mis-understand the condition
- Worried about acute decompensation in all cases

Informed the parents one day before clinic available if it is non-urgent

CASE EXAMPLE FOR ILLUSTRATION

CASE 1

- Term, BW 3Kg, Male, exclusive breast feeding, discharged home on day 2
- Day 2 screening result available on Friday evening:
 - Free Carnitine: C0 5.6 (cut-off >6.0)
 - Acylcarnitine: normal pattern
 - Amino acid: normal pattern
- DDX: Carnitine Uptake Defect (CUD)

CASE 1 – Suspected CUD

Call and inform parent the screening result immediately and assess the patient's condition, ask them to come back to NBS clinic on Monday or come back when they have suspicious of clinical deterioration

CASE 1 - Progress

- Baby was stable and feeding well
- Repeated DBS:
 - C0 >8.0
 - Acylcarnitine normal profile
 - Mother carnitine was normal
- Discharged home

CASE 2

- Term, BW 3Kg, Male, discharged home on day 2
- Day 2 screening result available on Friday evening:
 - Acylcarnitine: normal pattern
 - Amino acid: raised Phenylalanine >1000, all other aminoacids normal
- DDX: Phenylketonuria

Phenylalanine metabolism

CASE 2 - PKU

香港中文大墨醫麗院

Faculty of Medicine The Chinese University of Hong Kong

Call and inform parent the screening result on Sunday and ask them to come back to NBS clinic on Monday

CASE 2 - PKU

Ser Ser	rum Free Carnitine rum acylcarnitines patte No abnormal pattern det	ern sected.	3.5	umo1/1 19.3 - 53.9	
Plasm 45	a amino acids 5767-8				
	Amino acid	Concentration [umo1/1]	Age-specific reference range		
	Alanine. Allo-isoleucine Arginine. Argininosuccinic acid	. 279 . 1 . 72 . <1	[152-547] [0-5] [10-140] [0-8]	Gas chromatographic analysis of urinary organic acids Phenylalanine metabolites including phenyllactic. 3-pheny phenylacetic acids were markedly elevated.	lpyruvic and
(Aspartic acid Citrulline. Cystathionine. Glutamic acid	. 4 . 38 . <1 . 38	[0-24] [1-46] [0-3] [5-150]		
(Glutamine	. 391	[254-823]	High phenylalanine level on	
	Histidine. Isoleucine. Leucine.	. 82 . 71 . 96	[41-125] [22-107] [49-216]	biochemical testing	
	Lysine. Methionine. Ornithine Phenvlalanine	. 1// . 24 . 77	L 48-284] [7-47] [10 163] [26-91]	-> Dx: Phenylketonuria (PKU)	
	Serine	124 124	[69-187]		
	Threonine. Tryptophan. Tyrosine.	. 107 . 42 . 47	[35-226] [0-79] [24-115]		
* 1	Valine	. 249	[74-321]		

Case 2 - Management

- Confirmatory testing : PAH gene detected mutation
- Parents: carrier
- BH4 loading test: negative
- Treatment: Low protein (low phenylalanine diet), PKU formula

CASE 3

- Term, BW 3Kg, Male, discharged home on day 2
- Day 2 screening result available on Friday evening:
 - Acylcarnitine: elevated C3
 - Amino acid: normal pattern
- DDX: Propionic acidemia (PA); Methylmalonic acidemias (MMA) including defects in B12 synthesis and transport; maternal severe B12 deficiency.

香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong Call and inform parent the screening result immediately when result available Ask them to bring baby back for admission asap (That night!!)

Work closely with the NBS lab, neonatologist, and chemical pathologist

What do you need to know when handling Abnormal Newborn Metabolic Screening Results

END OF PRESENTATION THANK YOU