Hospital Authority Convention 2016

Use of Extracorporeal Membrane Oxygenation in Respiratory Failure

> Yan Wing Wa Department of Intensive Care Pamela Youde Nethersole Eastern Hospital

> > 3 May 2016

將血液體外加氧送回 讓心肺暫休息 人工肺續命存

552 嚴重肺炎、肺纖維化或禽流感侵襲的病人,可出現急性肺功能 安衰竭,導致氣氣無法進入血液,最終因多重器官衰竭死亡。本 港近年引入俗稱「人工肺」的體外膜氧合器(ECMO),將病人血液於 體外加氧再送回體內,暫代心肺功能,病人存活率可提高近兩成。

「人工肺」治療存活率達71% 俗稱「人工肺」的體外膜氣含器,以往常用於 開放式心臟手術時幫助病人呼吸,近年發現也適用 於患有急性肺炎或肺功能衰竭患者身上、如感染稀 流感、瘧疾等、國際有多個研究結果顯示、人工肺 治療病人存活率可由五成提升七成一。本港公立醫 院去年亦曾利用人工肺治療嚴重豬流感患者,有私

家醫院更成功利用人工肺治瘉一名感染痼疾的外籍 人士,爲全球首宗案例。 人工肺的運作原理是把病人體内的靜脈血液引

流至惯外密閉的矽膜或微孔膜 复合器内·代替病人肺部將氧 氣溶入血内·再帶離血中的二 領化碳、經道度調節後將含氧 血液送回大劲脈内,患者體内 的血和質不需經過自身肺部。 而是在體外進行氣體交換、達 到呼吸作用;從而減輕心臟壓 力和讓肺部休息,維持患者生 命,避免肺功能進一步喪失及 老重摆官穿影。

一名卅八歳印度裔商人, 5年十一日由赵谦中应离留

Wingate)指,該患者因出現嚴重肺炎,肺功能愈來 愈差,濒臨死亡邊緣;他說如半成紅血球有瘧疾寄

助染瘧疾印商在港康復

牛蟲已是很嚴重。

其後醫院利用「人工肺」,病人經兩日搶救後 逐漸轉好,至今年一月,在住院約兩個月後更康復 出院。鍾世文指,此宗是全球利用人工肺治瘡瘧疾 的首宗個案。

> 澳洲及纽西蒙一項研究顧 示,去年六十八名感染豬流感 後引致急性呼吸窘逼綜合症的 患者·曾人住深切治療部 (ICU) 接受人工肺治療,四 十八人治療後病情好轉。呼吸 系統科專科醫生曾華德指,綜 合國際有關人工肺在治療嚴重 肺炎的研究结果,整體使用後 的存活率達七成一,相較没有 使用人工肺的患者,存活率则 僅五成。但使用人工肺亦有一 定風險,如有六成二患者曾出

於人由城市、1000年止由城中

而可能因而缺氧和產場;其至 政治·本連多問公立和私受費 医近年引入倍病人生转的碘外 膜氣合語(scmo)、仿熊畔級 備環形統、社營新超热如氣的 人血液、為肺衰竭的病人「智

期效急性肺功能含竭。食糖器 董孝影察防御、今皇後介和爱下降。 爆放导播其偿款官自制。其至死亡。

每日收费約三篇元

人類豬流感去年肆虐全球 本港亦有不少人受感染,當中部分 屬嚴重患者,本港部分深切治療病 **原為病人提供體外膜氣合治療**,在

人工肺醫豬流感 6人康復1

【明報專訊】120名感染甲型 H1N1流感(人類豬流感)並要 入住公立醫院深切治療部的病 人中,有7人因肺功能極差需要 接受俗稱人工肺的體外膜氧合 (ECMO)治療,最後6人完全 康復,1人死亡。東區、聯合及 威爾斯3間醫院的深切治療科合 作而完成的研究顯示,本港的 深切治療病房能夠成功引進人 工肺技術。

【記者曾雁翔報道】 最新一期《香港醫學雜誌》報道, 曾 名病人 經有120名甲型流感(H1N1)患者,在深切治療部接受儀 人有慢 器進行體外呼吸和循環,當中7人使用了新技術「體外膜氣合 治療」(Extra Corporeal Membrane Oxygenation,簡 數 BMI 稱ECMO),此方法可暫時代替患者的心肺功能,讓醫療人員 胖。 爭取更多救治時間,當中6人康復,且無引起致命的併發症,顯 示本港可引進此技術醫治病人。

爭取治療時間

去年H1N1甲型流感大流行,香港有34,964人感染,死 研究 亡個案達60宗。患上了H1N1甲型流感有機會引發急性呼吸 及機械 客奉綜合症・導致呼吸困難・需要進行 10天及 的體 療病房 及31天心肺自 引致可

研究報告指出・在2009年5月至2010年2月・有120

ECMC

本港去年爆發人類豬型流感(H1N1)後,香港部 分深切治療病房開始提供俗稱人工肺的體外膜氧合治 療(ECMO),爲患者進行體外的呼吸與循環。最新一 期《香港醫學雜誌》分析本港採用人工肺的治療結 果、甌示與外國的報告相近,認爲香港有能力全面引 進人工肺技術,用以治療重度心肺衰竭患者。

人類

使用

國家

及澳

ECMO(俗稱人工肺)是一種醫療急救設備,可引 流病人的靜脈血至體外,經氣體交換後再送回病人的 動脈或靜脈,暫時替代患者的心肺功能。

六名H1N1危殆病人康復

膜氧合治療

治療

為小

件・

國相對

效益利

Principles of ECMO

Temporary support the failed lung

- Not suitable for irreversible lung failure
- Less suitable for the lung condition required long time to heal (complication risk > benefit)
- Buy time for the lung to recover
 - Keep patient alive
 - Create an optimal condition for the lung to heal
- Avoid complications related to ECMO

Zapol, : (NIH Trial) (VA ECMO +ventilation and ventilation only) Severe ARF. A Randomized Prospective Study. *JAMA* 1979:242:2193-6

- 90 patients from across the US between 1974 and 1977.
- No benefit shown with survival of <10% in both groups</p>
- Issues with the study:
 - Primitive ECMO design
 - Limited experience with ECMO and IPPV
 - During ECMO, lungs were not put to rest
 - High bleeding complications

Morris et al. PC-IRV vs Extracorporeal CO₂ Removal Am J Respir Crit Care Med 1994;149:295-305

- 40 patients with severe ARDS enrolled
- 33% survival in 21 patients ECCO₂R + LFPPV
- 42% survival in 19 patients PCIRV
- P = 0.8
- 7/19 cases on ECCO₂R with bleeding resulting in premature discontinuation of Rx
- High pressure ventilation used before and ECCO₂R with peak inspiratory pressure 45-50cm H₂O

Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial

Giles J Peek, Miranda Mugford, Ravindranath Tiruvoipati, Andrew Wilson, Elizabeth Allen, Mariamma M Thalanany, Clare L Hibbert, Ann Truesdale, Felicity Clemens, Nicola Cooper, Richard K Firmin, Diana Elbourne, for the CESAR trial collaboration

www.thelancet.com Published online September 16, 2009

Lancet 2009, 374:1351-63

- 177 UK patients, aged 18-65 years
- Randomly allocated
 - Consideration for treatment by ECMO or to receive conventional management
- Survival to 6 months without disability
 - 63% (57/90) in the group considered for treatment by ECMO
 - 47% (41/87) in the group of conventional management
 - Relative risk 0.69 (0.05-0.97) & p=0.03
 - No. needed to save one life without disability is 6

ECMO for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome

The Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators *JAMA*. 2009;302(17):1888-1895. Published online October 12, 2009(doi:10.1001/jama.2009.1535)

- During winter 2009 (1 June 2009 to 31 August 2009), Australia
 & New Zealand ICUs
- 68(34%) required ECMO out of 133 patients with IPPV
- For patients given ECMO
 - 48/68 (71%) survived ICU
 - 32/68 (47%) survived hospital
 - 16/68 (24%) still in hospital
 - 6/68 (9%) still in ICU
 - 14/68 (21%) died

CARING FOR THE CRITICALLY ILL PATIENT

Referral to an ECMO center and mortality among patients with severe 2009 H1N1 – UK Study JAMA. 2011;306(15):doi:10.1001/jama.2011.1471

- Cohort study involving 4 adult ECMO centers
 - 80 ECMO referred patients: H1N1 with severe ARDS, referred, accepted and transferred
 - 69(86.3%) actually received ECMO therapy
 - 22(27.5%) died
- Hospital mortality
 - Individual matching: 23.7% vs 52.5%, RR 0.45, p=0.006
 - Propensity score: 24.0% vs 46.7%, RR 0.51, p=0.008
 - GenMatch matching: 24.0% vs 50.7%, RR 0.47, p=0.001
- Number needed to refer to save 1 life is 4

Adult Respiratory (18 years and over)

Annual Respiratory Adult Runs

Pediatric Respiratory (> 30 days and < 18 years)

Annual Respiratory Pediatric Runs

Respiratory ECMO in Hong Kong

ECLS Registry Report International Summary Respiratory Support Mode

VV & VV-DL ECMO

Dual Lumen ECMO Cannula

Difference between VA and VV ECMO

	VA	VV
Hemodynamic		
Systemic perfusion	ECMO flow and cardiac output	Cardiac output only
Arterial BP	Pulse contour damped	Pulse contour full
PA pressure	Decrease in proportion to ECMO flow	Not affected
Effect of R-L shunt	Present	None
Differential body perfusion	Occurs (in peripheral VA)	Does not occur

Difference between VA and VV ECMO

	VA	VV
Gas exchange		
Arterial oxygenation	Saturation depends on site (perfused by ECMO flow or native CO)	Same throughout systemic circulation (if no residual lung function, saturation <90% unless high flow VVV-ECMO)
Weaning	Cannot decrease O2 flow to zero	Can disconnect O2 flow
Arterial cannulation	Risk of limb ischaemia	None

- LSS, female/41 year-old
- Necrotizing pneumococcal pneumonia
- Complicated R empyema thoracis
- Severe respiratory failure & intubated
- Progressively worsen despite maximal support including IPPV
- PaO2 <10kPa with FiO2 1.0 & PEEP >15cmH2O

LSS, F/41

- VV-ECMO was started
- R chest drain, pus drainage was good initially
- Later blocked by fibrin
- Urokinase locally instilled to R chest drain
- Developed massive hemoptysis two days later

Massive hemoptysis

- Spigot the endotracheal tube for two days
- Surgeon performed rigid bronchoscopy to clear the blood clots later

Rigid bronchoscopy record

Preoperative Diagnosis:

Blood clots in main airways. Necrotising pneumonia with haemoptysis

Operative Diagnosis:

Haemorrhage from respiratory passage

Upper airway obstruction

Procedure:

Removal of intraluminal foreign body from trachea and bronchus without incision (blood clots)

Lavage of bronchus and trachea

Bronchoscopy, rigid

Fibre-optic bronchoscopy

Specimens sent for Pathological Examination:

Findings:

Lower trachea and both main bronchi completely occluded by blood clots.

(*Modifier: ?=Provisional; C=Complications)

LSS, F/41

- On day 26, hemodynamics stabilized but oxygenation remained very poor
- Patient was put on "awake ECMO", i.e. extubated the patient & off mechanical ventilation
- Gradually patient's oxygenation improved
- Weaned off ECMO on day 35
- Discharged from ICU on day 39
- Discharged from hospital on day 77

FU at OPD 8 months later

[L

[F?]

[R]

Awake ECMO

- Body saturation supported by ECMO only
- No intubation
- Improve patient's comfort
- Easy to monitor neurological status
- No ventilator associated lung injury
 - Already having pneumothorax with persistent gas leak
- No ventilator associated pneumonia
 - Immunocompromised patient
 - Patient waiting for transplant
- Allow patient to cough but needs
- A conscious and cooperative patient

Complications of ECMO

- Vessel damage during insertion
- Unidentified heart failure
- Bleeding
- Circuit thrombosis
- Oxygenator failure
- Haemolysis
- Air embolism
- Circuit rupture
- Infection

2 Forms of VV-ECMO

Extracorporeal membrane oxygenation (ECMO)

- High flow (4 6 L/min)
- Both oxygenation & CO₂ removal
- Extracorporeal CO₂ removal (ECCO₂R)
 - Low flow (0.5 to 1 L/min)
 - Only CO2 removal

Extracorporeal flow needed

Physiology Of O₂ delivery

- O_2 consumption ~ 240 ml/min
- Amount of O₂ added to the blood via ECMO ~ 40-60 ml/L
 - 1.34 * Hb * (S_{out}O₂ S_{in}O₂)
- 4 6 L/min blood flow is needed

Physiology of CO₂ removal

- CO₂ generation ~ 200 ml/min
- Amount of CO₂ stored in blood
 ~ 500 ml/L
- Achieved adequate CO2 removal with < 1L/min

Carbon Dioxide

Tidal Volume Lower than 6 ml/kg Enhances Lung Protection

Anesthesiology 2009;111:826-35

Role of Extracorporeal Carbon Dioxide Removal

Pier Paolo Terragni, M.D.,* Lorenzo Del Sorbo, M.D.,* Luciana Mascia, M.D., Ph.D.,* Rosario Urbino, M.D.,* Erica L. Martin, Ph.D.,* Alberto Birocco, M.D.,† Chiara Faggiano, M.D.,† Michael Quintel, M.D.,‡ Luciano Gattinoni, M.D.,§ V. Marco Ranieri, M.D.||

Ultra-Protective Lung Ventilation

ECCO₂R potential applications

- ARDS (moderate severity) with ultra-protective lung ventilation
 - Ventilated using tidal volume of 4 ml/kg,
 - Less lung injury but hypercapnia
- COPD exacerbation
 - Failed NIV
- Status Asthmaticus
- Bridge to lung transplant (CO2 retention problem only)

ECCO₂R machines

Conclusions

- ECMO Evolving life support technology for respiratory failure
- Definite role in very severe respiratory failure
- ? How about its role in less severe failure
- ? What should be the positions of
 - ECCO₂R (low flow & less invasive)
 - Especially in the presence of new modes of ventilation, prone positioning,etc.

Thank you for your attention.