
NIPT as Primary Screening for Down's Syndrome - Against

Dr. LAW Lai Wa
Consultant
Department of O&G
Prince of Wales Hospital

Current Universal Down's Screening Program In Hong Kong

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong

First Trimester Down's Screening

Sensitivity: 90% False positive rate: 5%

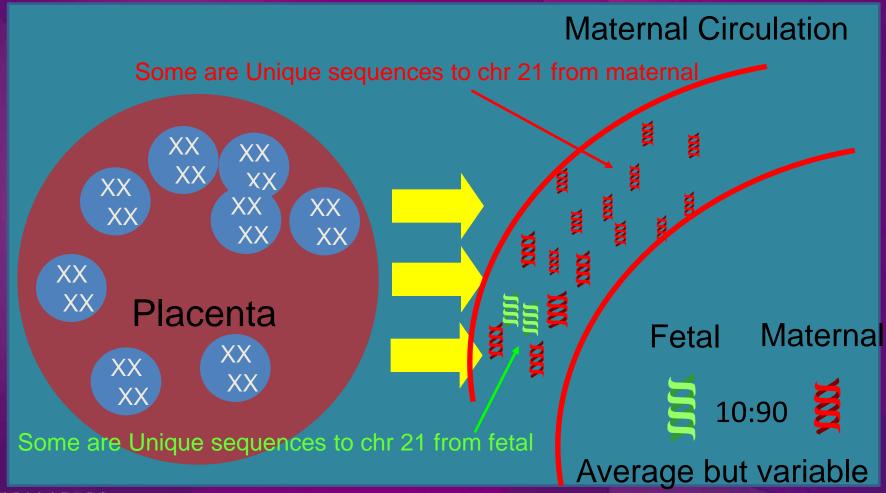
Risk = Background risk * LR_{NT}* LR_{HCG}* LR_{PAPPA}

Maternal history

Nuchal Translucency

16 Mar Dg - Tibola 16 0.5
64C, P.W.H. C5-2/GS/NT U9:39:58 Fr #305 8.4 cm

fbHCG


PAPP-A

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong

Cell-free Fetal DNA in Maternal Plasma

Non-Invasive Prenatal Testing is 99 per cent accurate when screening for Down's syndrome

Test carries no risk of causing miscarriage unlike amniocentesis or CVS

PUBLISHED: Monday, 19 January, 2015, 6:11am UPDATED: Monday, 19 January, 2015, 6:11am

South China Morning Post

NIPT as Primary Screening for Down's Syndrome

NIPT to replace current universal combined screening

Comparison of cFTS vs NIPT

- 1. Detection rate
- 2. Missing abnormality
- 3. Procedure-related miscarriage
- 4. Cost-effectiveness
- 5. Potential problems

Comparison of cFTS vs NIPT

- 1. Detection rate
- 2. Missing abnormality
- 3. Procedure-related miscarriage
- 4. Cost-effectiveness
- 5. Potential problems

NIPT as Primary Screening for Down's Syndrome

Performance

Based on 24 studies (1051 T21 and 21,608 euploidies)

	1 st tri combined	Invasive test	NIPT T21	1.	Detecting more babies with Down's
Sensitivity	90%	100%	99.2%	2.	Less invasive procedure less miscarriage
False + rate	5%	0%	0.09%		7 icos imodarriage

NIPT is very accurate but still a screening

NIPT as Primary Screening for Down's Syndrome

Performance

Based on 24 studies (1051 T21 and 21,608 euploidies)

11000	1 st tri	1 st tri	NIPT	NIPT	NIPT	NIPT
	Combined T21	Combined T13/18	T21	T18	T13	FPR
Sensitivity	90%	95%	99.2%	96.3%	91%	
False + rate	5	i%	0.09%	0.13%	0.13%	0.35%

NIPT is very accurate but still a screening

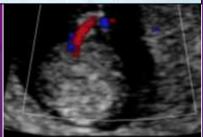
How about other chromosomal abnormality

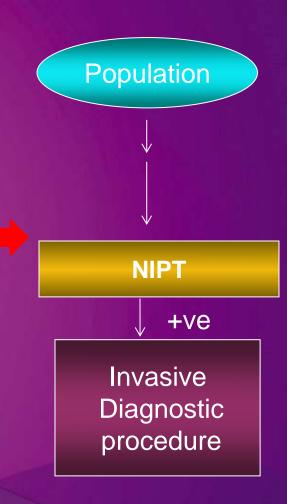
- T18 DR 96.3%; FPR 0.13%
- T13 DR 91%; FPR 0.13%

Gil et al UOG 2015

- Sex chromosome
- Chromosome rearrangement
- Huge NT
- Use of prenatal microarray (Additional 5-10% Pathogenic

CNV's)

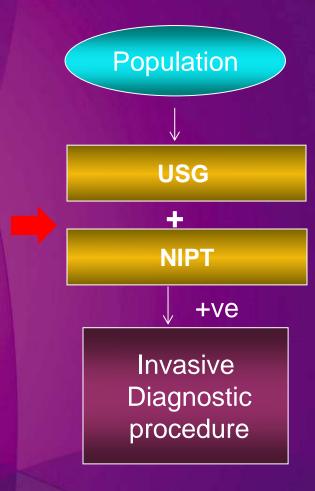




- ACMG:
- ~50% of cytogenetic abnormalities detected by amniocentesis will not be detected if only trisomy 13,18,21 are the only aneuploidies being screened
- Susman et al:
- combined DSS vs universal NIPT → 17% atypical chromosomal abnormality wound be missed

Population 1st trimester USG NT + **Biochemical screening** +ve Invasive

Invasive Diagnostic procedure



- ACMG :
- ~50% of cytogenetic abnormalities detected by amniocentesis will not be detected if only trisomy 13,18,21 are the only aneuploidies being screened
- Susman et al:
- combined DSS vs universal NIPT → 17% atypical chromosomal abnormality wound be missed

Population 1st trimester USG NT + **Biochemical screening** +ve Invasive Diagnostic

procedure

Professional Society Groups Local Downs screen +ve pregnancies since July 2010-2014

T21 DR91% 83

Chromosor	nal Abnormality	Fetuse	s NT>=3mm
Trisomy 21	Data atalala la	83	45%
Trisomy 18	Detectable by	37	38%
Trisomy 13	cffDNA	21	62%
Turners		15	93%
Chromosom	e Mosaic	8	38%
Chromosom	al Translocation	6	67%
Chromosom	e Rings	2	High NT 0%
Deletion		2	26 (55%) 50%
47 XXX		3	0%
47 XXY		2	50%
Triploidy		1	0%
Other		8	38%

Incidental aneuploidy detected in 25% (including sex chr)

14% (excluding sex chr)

Comparison of cFTS vs NIPT

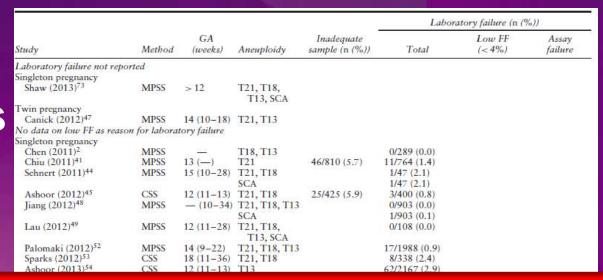
- 1. Detection rate
- 2. Missing abnormality
- 3. Procedure-related miscarriage
- 4. Cost-effectiveness
- 5. Potential problems

What is aim of providing screening?

Comparison of cFTS vs NIPT

- 1. Detection rate
- 2. Missing abnormality
- 3. Procedure-related miscarriage
- 4. Cost-effectiveness
- 5. Potential problems

NIPT – False positive rate


Based on 24 studies (1051 T21 and 21,608 euploidies)

2/1/2	1 st tri	1 st tri	NIPT	NIPT	NIPT	NIPT	NIPT
10000	Combined	Combined	T21	T18	T13	Sex chr	FPR
	T21	T13/18					
Sensitivity	90%	95%	00 2%	96.3%	01%		
Ochsilivity	30 70	93 /0	33.270	90.576	3170		
False +	5	%	0.09%	0.13%	0.13%	0.37%	0.72%
rate							

NIPT is very accurate but still a screening

NIPT No results

No results rate ranged from 0 - 12.2%

Exclude inadequate sample and transport problem → still 0-6.3%

I (2012)56	Amee	12/11 201	T24		0/12 /0 0\		
Lau (2013)56	MPSS	13 (11-20)	T21		0/12 (0.0)		
Grömminger (2014) ⁶⁶	MPSS	15 (10-18)	T21		0/56 (0.0)		
Huang (2014) ⁶⁹	MPSS	19 (11-36)	T21, T18		0/189 (0.0)		
Details given on reason for	laboratory	failure					
Singleton pregnancy							
Ehrich (2011) ⁴²	MPSS	16 (8-36)	T21	13/480 (2.7)	18/467 (3.9)	7/467 (1.5)	11/467 (2.4)
Palomaki (2011) ⁴³	MPSS	15(8-21)	T21		13/1696 (0.8)	9/1696 (0.5)	4/1696 (0.2)
Bianchi (2012)46	MPSS	15 (10-23)	T21, T18, T13	2/534 (0.4)	30/532 (5.6)	16/532 (3.0)	14/532 (2.6)
			SCA		65/532 (12.2)	16/532 (3.0)	49/532 (9.2)
Nicolaides (2012)50	CSS	12 (11-13)	T21, T18	100/2149 (4.7)	100/2049 (4.9)	46/2049 (2.2)	54/2049 (2.6)
Norton (2012)51	CSS	16 (10-38)	T21, T18	104/4002 (2.6)	148/3228 (4.6)	57/3228 (1.8)	91/3228 (2.8)
Verweij (2013)62	CSS	14 (10-28)	T21	30/595 (5.0)	16/520 (3.1)	7/520 (1.3)	9/520 (1.7)
Hall (2014)67	SNP	16 (12-22)	T13		4/68 (5.9)	4/68 (5.9)	000 KU 0120 W 7 U 8 W 012120
Nicolaides (2014) ⁷⁰	CSS	12 (11-13)	SCA		5/177 (2.8)	4/177 (2.3)	1/177 (0.6)
Pergament (2014) ⁷¹	SNP	14 (7-40)	T21, T18,		85/1051 (8.1)	64/1051 (6.1)	21/1051 (2.0)
A TOTAL AND A MANAGEMENT OF THE POST OF TH			T13, SCA				ERBORNESHOLAT PROBLEM
Quezada (2015) ⁷⁵	CSS	10 (10-11)	T21, T18, T13	1/2905 (0.03)	53/2905 (1.8)	38/2905 (1.3)	15/2905 (0.52)
Twin pregnancy		CONTRACTOR STATE				100000000000000000000000000000000000000	
del Mar Gil (2014)65	CSS	13 (12-13)	T21, T18, T13		15/207 (7.2)	11/207 (5.3)	4/207 (1.9)

Gil et al UOG 2015

Failure Rate

Table 3 Failure rates in 11 studies of cell-free DNA testing*

Trial	Failure rate (n (%))	Reasons for failure
Chiu et al.65	11/764 (1.4)	Low total DNA $(n=2)$, low DNA library concentration $(n=8)$, low matched DNA sequence reads $(n=1)$
Ehrich et al.66	18/467 (3.8)	Low % fetal DNA (< 4 %) ($n = 7$), low total DNA (< 556 copies) ($n = 7$), low DNA library concentration (< 32.3 nM) ($n = 15$), low number unique DNA sequence counts (< 3 million) ($n = 11$); some failed more than one criteria
Palomaki et al.67	13/1696 (0.8)	Low % fetal DNA (< 4%) ($n = 6$), other QC parameters ($n = 7$): low DNA library concentration (< 25 nM) and low matched DNA sequence reads (< 12.5 million)
Bianchi et al.68	16/532 (3.0)	No fetal DNA
Sparks et al. ⁷⁰	8/338 (2.4)	Low % fetal DNA (< 3%), low DNA sequence counts, evidence from SNPs of non-singleton pregnancy
Ashoor et al.69	3/400 (0.8)	Amplification and sequencing
Norton et al. ⁷¹	148/3228 (4.6)	Low % fetal DNA ($< 4\%$) ($n = 57$), assay failure ($n = 91$): inability to measure % fetal, high variation in DNA counts and failed sequencing
Lau et al. ⁷³	0/567 (0.0)	
Nicolaides et al.74	100/2049 (4.9)	Low % fetal DNA ($< 4\%$) ($n = 46$), assay failure ($n = 54$)
Dan et al. ³⁹	79/11 184 (0.7)	Quality of separation, extraction, sample preparation and sequencing: low peak DNA library size, low library concentration (< 30 nM) and low matched DNA sequence reads (< 2 million)
Gil et al. ⁷⁸	40/997 (4.0)	Low % fetal DNA (< 4 %) ($n = 23$), assay failure ($n = 17$)

^{*}Excluding tests rejected because of inadequate sample quality.

Redraw and retest -> still ½ cases failure

No results? Invasive test

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 23, 2015

VOL. 372 NO. 17

Cell-free DNA Analysis for Noninvasive Examination of Trisomy

- Porspective multicenters (35)
- 15,841 participants
- 3% no results rate
- Among no results group, 2.7% aneuploidy vs 0.4% in overall cohort
- Estimation :
 - $-40,000 \times 3\% \times 2.7\% = 33$

NIPT – False positive rate

Based on 24 studies (1051 T21 and 21,608 euploidies)

11/1/19	1 st tri	1 st tri	NIPT	NIPT	NIPT	NIPT	NIPT
1111111111	Combined	Combined	T21	T18	T13	Sex chr	FPR
	T21	T13/18					
Sensitivity	90%	95%	99.2%	96.3%	91%		
False + rate	5	%	0.09%	0.13%	0.13%	0.37%	0.72%

No results: 3.2%

→ 4%

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong

Prospective assessment of the Hong Kong Hospital R I G I N A L Authority universal Down syndrome screening programme

邵浩達 Daljit S Sahota 梁永昌 WC Leung WP Chan 陳蓮鵬 William WK To 朴學基 Elizabeth T Lau 劉嚴德光 梁德楊 TY Leung

Objective To evaluate the performance of the locally developed universal Down syndrome screening programme.

Design Population-based cohort study in the period July 2010 to June 2011 inclusive.

Four Hong Kong Hospital Authority Departments of Obstetrics and Gynaecology and a central university-based laboratory for maternal serum processing and risk determination.

> Women were offered either a first-trimester combined test (nuchal translucency, free beta human chorionic gonadotropin, and pregnancy-associated plasma protein-A) or nuchaltranslucency-only test, or a second-trimester double test (alpha-fetoprotein and total human chorionic gonadotropin) for detection of Down syndrome according to their gestational age. Those with a trisomy 21 term risk of 1:250 or higher were offered a diagnostic test.

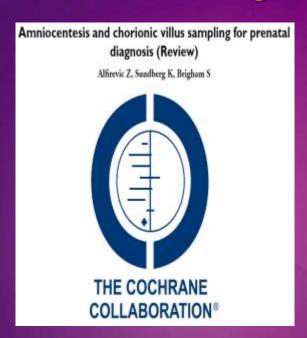
MISCARRIAGE RATE $\approx 0.9\%$ (NOT EXLCUDING BACKGROUND RATE)

Key words

Down syndrome; First trimester screening: Second trimester screening; Nuchal translucency; Quality control

Hong Kong Med J 2013;19:101-8

Results


Participants |

A total of 16 205 pregnancies were screened of which 13 331 (82,3%) had a first-trimester combined test, 125 (0.8%) had a nuchal-translucency test only, and 2749 (17.0%) had a secondtrimester double test. There were 38 pregnancies affected by Down syndrome. The first-trimester screening tests had a 91.2% (31/34) detection rate with a screen-positive rate of 5.1% (690/13 456). The second-trimester test had a 100% (4/4) detection rate with a screen-positive rate of 6.3% (172/2749). There were seven (0.9%) pregnancies that miscarried following an invasive diagnostic test. There were two Down syndrome-affected live births, both with an estimated first-trimester trisomy 21 term risk lower than 1:250.

Cost-effectiveness of NIPT in Practice

latrogenic Loss / Procedure Loss Rates

Procedure Loss Rate after amnio ≈ 1%

Study by A Tabor et al 1986

Improvement in amnio/CVS performance over last 30 yrs?

Update on Procedure-Related Risks for Prenatal Diagnosis Techniques

Ann Tabor^a Zarko Alfirevic^b Procedure Loss Rate ≈ 0.5-1%

Fetal Diagn Ther 2010

Procedure-related risk of miscarriage following amniocentesis and

chorionic villus sampling: a systematic review and meta-analysis

Procedure Loss Rate Amnio ≈ 0.11%

 $CVS \approx 0.22\%$

Ranjit Akolekar^{1,2}, Jaroslaw Beta¹, Gemma Picciarelli¹, Caroline Ogilvie³, Francesco

D'Antonio4

UOG 2014

Background miscarriage rate

Miscarriage : 4% → 1608 x 0.9% =15

DSS 2015 (n=40207)

DSS1 (91.7%)

DSS2

36877 Screen+ 5.4% 3330 Screen+ 6.7%

Miscarriage : 1991 + 223 = 2214 $2214 \times 0.9\% = 20$

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong

Comparison of cFTS vs NIPT

- 1. Detection rate
- 2. Missing abnormality
- 3. Procedure-related miscarriage
- 4. Cost-effectiveness
- 5. Potential problems

cffDNA General Population

cffDNA Performance in low risk and high risk should be similar

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY 27, 2014

VOL. 370 NO. 9

DNA Sequencing versus Standard Prenatal Aneuploidy Screening

"One of the issues with respect to whether a certain test should be recommended inevitably has to include the issue of cost. Until everybody has a good understanding of what this test is going to cost globally for large numbers of patients, I think we have to be careful about what we recommend replacing the current technology"

Associate Editor, The New England Journal of Medicine

Costs for large populations?

Recent cost studies for implementing cffDNA Test

Clinical utility and cost of non-invasive prenatal testing with cfDNA analysis in high-risk women based on a US population

Ken Song¹, Thomas J. Musci¹, and Aaron B. Caughey²

¹Ariosa Diagnostics, Inc., San Jose, CA, USA and ²Oregon Health & Science Unitersity, Portland, OR, USA

J Matern Fetal Neonatal Med, 2013; 26(12): 1180-1185

Harmony Test
Targeted analysis
2013

OPEN @ ACCESS Freely available online

Model-Based Analysis of Costs and Outcomes of Non-Invasive Prenatal Testing for Down's Syndrome Using Cell Free Fetal From the K National Health Service

Stephen Morris¹*, Saffron Ka

1 Department of Applied Health Research, Universulting United Kingdom, 3 Clinical and Molecular Genetics United Kingdom, 4 Fetal Medicine Unit, University Co

A cost-effectiveness ar noninvasive prenatal

elissa Hill^{3,4}, Lyn S. Chitty^{3,4}

d Kingdom, 2 NHS Fetal Anomaly Screening Programme, University of Exeter, Exeter, ealth and Great Ormond Street Hospital for Children NHS Foundation Trust, London, HS Foundation Trust, London, United Kingdom

ing different strategies to implement wn syndrome screening program

Alice C. AYRES, 1,* Jennifer A. HITTY², David A. ELLWOOD⁴

¹School of Medicine, Gold Coast Campus, Griffith University, Gold Coast, ²Population and Social Health Research Program, Griffith Health Institute, Centre for Applied Health Economics, School of Medicine, Griffith University, Logan, ³School of Pharmacy, University of Queensland, Brisbane, ⁴School of Medicine, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia 2014

NIPT

Miscarriage:

Detection rate:

4% → 1608

98 x 99.2 % → ~97

1608 x 0.9% =15

Miss 1 DS

DSS 2015

(n=40207)

DSS1

(91.7%)

DSS₂

36877

Screen+ 5.4%

87.9% Sensitivity (80/91)

3330

Screen+ 6.7%

57.1%

Sensitivity

(4/7)

Miscarriage: 1991 +223 = 2214

 $2214 \times 0.9\% = 20$

Detection rate:

(84 + 4)/98 = 90%

Miss 14 DS

(14 False -ve)

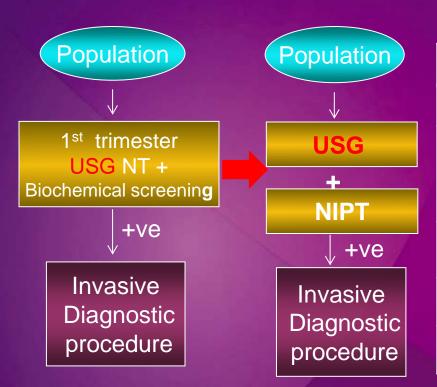
Overall Sensitivity

85.7% at a 5.3% Screen + rate

2 miscarriage,

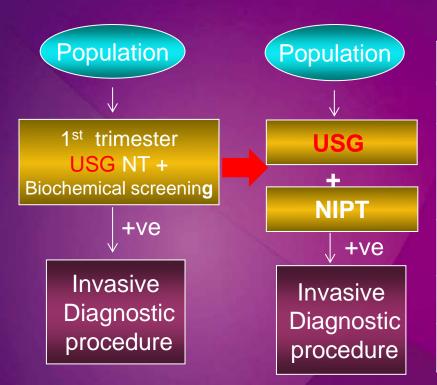
1 IUD

1 TOP

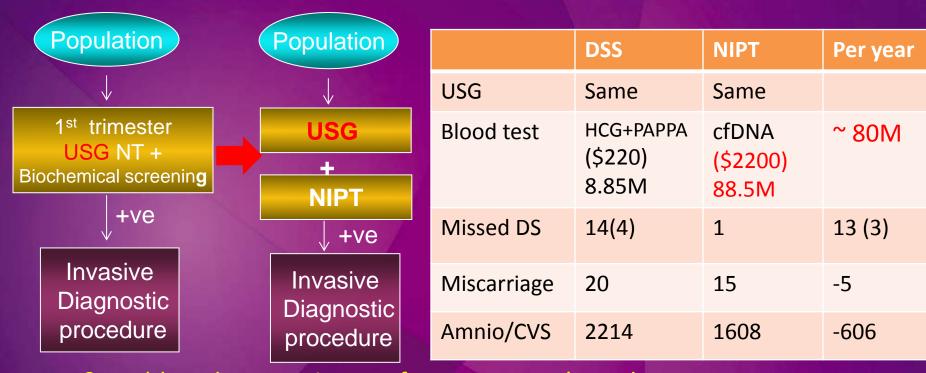

4 USG

1 NIPT

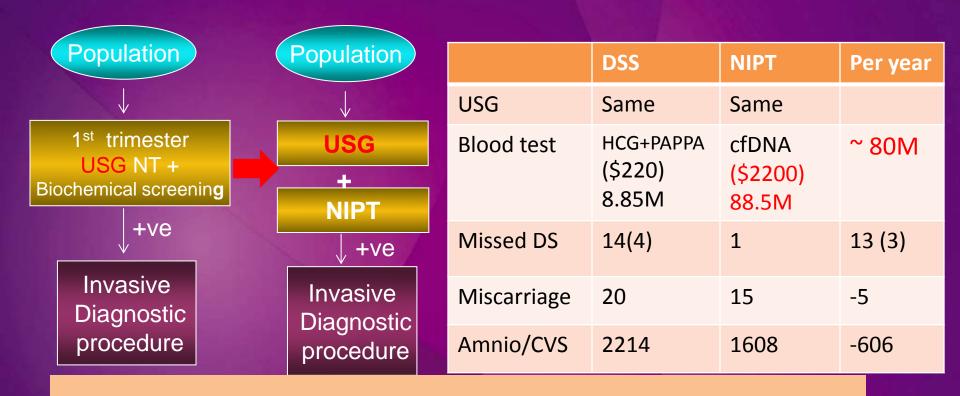
1 CVS


4 live births

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong


	DSS	NIPT	Per year
USG	Same	Same	
Blood test	HCG+PAPPA (\$220) 8.85M	cfDNA (\$4400) 177M	~ 168M
Missed DS	14(4)	1	13 (3)
Miscarriage	20	15	-5
Amnio/CVS	2214	1608	-606

Assume NIPT market price: HKD 4400



	DSS	NIPT	Per year
USG	Same	Same	
Blood test	HCG+PAPPA (\$220) 8.85M	cfDNA (\$2200) 88.5M	~ 80M
Missed DS	14(4)	1	13 (3)
Miscarriage	20	15	-5
Amnio/CVS	2214	1608	-606

Assume NIPT market price: HKD 2200

- ? Health and economic costs for every Down's syndrome case
- ? Miscarriage
- Not all family will terminate fetus with DS
- Cost for cffDNA (NIPT) may drop
- IF NIPT provided by HA, number of pregnant women seeking for the services will increase (60000 vs 40000)

Not for Primary Screening ≠ No role

Cost-effectiveness of NIDT in Practice

Universal Screening - How should it be integrated?

To reduce iatrogenic loss

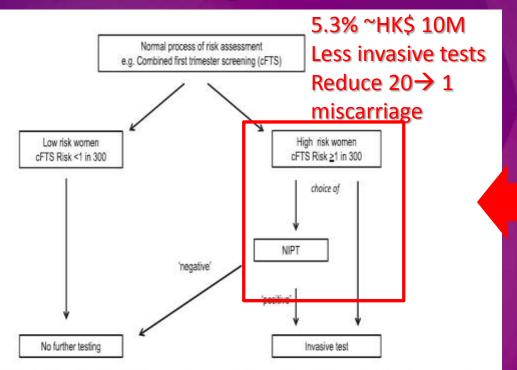
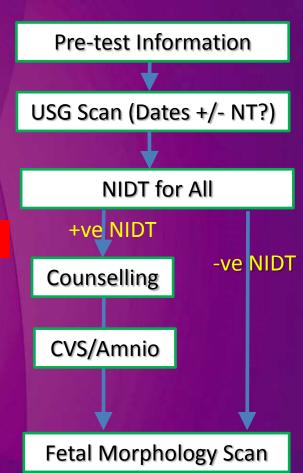



Figure 1 Using Non Invasive Prenatal Testing (NIPT) as an adjunct/second tier screening tool after combined first trimester screening (cFTS). Women who are high risk are offered a choice of proceeding to NIPT or directly to invasive testing.

Cost-effectiveness of NIDT in Practice

Universal Screening - How should it be integrated?

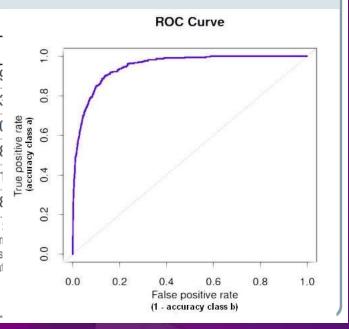
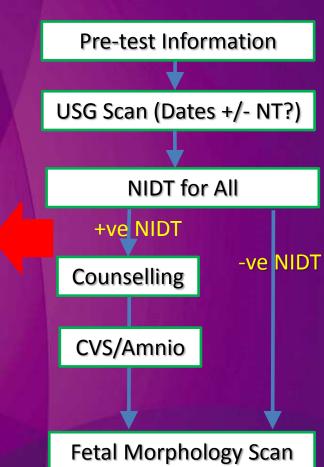

Why Primary screening? Contingent Screening should be more cost-effective

TABLE 2 Projected numbers undergoing noninvasive prenatal diagnosis

Screening				NIPD			
Cut-off (1 in)		DR _s FPR _s		NIPD	DR _N	FPR _N	TP _N
150	50	85.0% _C	0% ^{2.5%}	50/13,646	99.0%	1.0%	1169
500	,	94.0%	7%	37,704	99.0%	1.0%	1293
1000		96.0%	12%	60,668	99.0%	1.0%	1320
2000		98.0%	19%	94,103	99.0%	1.0%	1348
5000		99.0%	31%	155,944	99.0%	1.0%	1361
10,000		99.5%	43%	215,785	99.0%	1.0%	1368

Figures calculated for hypothetical population of 500,000 women. With Down syndrome prevalence at screening of 1 in rather than NIPD with screening cut-off of 1 in 150, 13,646 women would undergo CVS, detecting 1181 Down syndrom CVS, chorionic villus sampling; DR_{N} , detection rate with NIPD; DR_{S} , detection rate with screening; FV_{S+N} , combined fals prevalence cases – TP_{N} ; FP_{N} , false-positive results with NIPD; FPR_{N} , false-positive rate with NIPD; FPR_{S} , false-positive rate with NIPD.


Chitty. Noninvasive prenatal testing for aneuploidy. Am J Obstet Gynecol 2012.


Cost-effectiveness of NIDT in Practice

Universal Screening - How should it be integrated? To improve detection rate

n alternative 'contingent' model for Non Invasive Prenatal Testing (NIPT) as an adjunct/second tier screening tool after st trimester screening (cFTS).

Conclusion

- NIPT should not be used as primary screening for Down's syndrome to replace current combined screening
 - Although detect more Down's syndrome, it will miss other chromosomal/genetic/structural abnormality
 - Retain the first trimester scan will be required to identify these abnormalities
 - The reduction in invasive tests and the procedural related miscarriage is overestimated
 - It is unlikely to be cost-effective
- Services could be improved using NIPT as sequential screening or contingent screening

Thank you

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong